AttributesValues
type
value
  • Understanding the number of individuals who have been infected with the novel coronavirus SARS-CoV-2, and the extent to which social distancing policies have been effective at limiting its spread, are critical for effective policy going forward. Here we present estimates of the extent to which confirmed cases in the United States undercount the true number of infections, and analyze how effective social distancing measures have been at mitigating or suppressing the virus. Our analysis uses a Bayesian model of COVID-19 fatalities with a likelihood based on an underlying differential equation model of the epidemic. We provide analysis for four states with significant epidemics: California, Florida, New York, and Washington. Our short-term forecasts suggest that these states may be following somewhat different trajectories for growth of the number of cases and fatalities.
Subject
  • Epidemiology
  • Causal inference
  • Causality
  • Scientific modeling
  • Statistical theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software