AttributesValues
type
value
  • The novel coronavirus SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19 which has become a global concern due to its rapid spread. Meanwhile, increased demand in testing has led to shortage of reagents, supplies, and compromised the performance of diagnostic laboratories in many countries. Both the world health organization (WHO) and the Center for Disease Control and Prevention (CDC) recommend multi-step RT-PCR assays using multiple primer and probe pairs, which might complicate interpretation of the test results especially for borderline cases. In this study, we describe an alternative RT-PCR approach for the detection of SARS-CoV-2 RNA that can be used for the probe-based detection of clinical isolates in the diagnostics as well as in research labs using a low cost SYBR green method. For the evaluation, we used samples from patients with confirmed SARS-CoV-2 infection and performed RT-PCR assays along with successive dilutions of RNA standards to determine the limit of detection. We identified an M-gene binding primer and probe pair highly suitable for quantitative detection of SARS-CoV-2 RNA for diagnostic and research purposes.
Subject
  • Laboratories
  • Medical research institutes in the United States
  • Molecular biology
  • Organizations established in 1948
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software