About: Background: Globally response to the SARS-CoV-2 pandemic is highly limited by diagnostic methods. Currently, World Health Organization (WHO) recommends the use of molecular assays for confirmation of SARS-CoV-2 infection which are highly expensive and require specialized laboratory equipment. This is a limitation in mass testing and in low resource settings. SARS CoV-2 IgG/IgM antibody tests have had poor diagnostic performance that do not guarantee their use in diagnostics. In this study we demonstrate a concept of using a combination of RDTs in an algorithm to improve their performance for diagnostics. Method: Eighty six (86) EDTA whole blood samples were collected from SARS-CoV-2 positive cases admitted at Masaka and Mbarara Regional Referral Hospitals in Uganda. These were categorized from day when confirmed positive as follows; category A (0-3 days, 10 samples), category B (4-7 days, 20 samples), Category C (8-17 days, 11 samples) and Category D (18-28 days, 20 samples). Plasma was prepared, transported to the testing laboratory and stored at -200C prior to testing. A total of 13 RDTS were tested following manufacturers instructions. Data was entered in Microsoft Excel exported to STATA for computation of sensitivity and specificity. We computed for all possible combinations of 2 of the 13 RDTS (13C2) that were evaluated in parallel algorithm. Results: The individual sensitives of the RDTs ranged between 74% and 18% and there was a general increasing trend across the categories with days since PCR confirmation. A total of 78 possible combinations of the RDTs to be used in parallel was computated. The combinations of the 2 RDTS improved the sensitivities to 90%. Discussion: We demonstrate that use of RDTs in combinations can improve their overall sensitivity. This approach when used on a wider range of combination of RDTs may yield combinations that can give sensitivities that are of diagnostics relevance in mass testing and low resource setting.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: Globally response to the SARS-CoV-2 pandemic is highly limited by diagnostic methods. Currently, World Health Organization (WHO) recommends the use of molecular assays for confirmation of SARS-CoV-2 infection which are highly expensive and require specialized laboratory equipment. This is a limitation in mass testing and in low resource settings. SARS CoV-2 IgG/IgM antibody tests have had poor diagnostic performance that do not guarantee their use in diagnostics. In this study we demonstrate a concept of using a combination of RDTs in an algorithm to improve their performance for diagnostics. Method: Eighty six (86) EDTA whole blood samples were collected from SARS-CoV-2 positive cases admitted at Masaka and Mbarara Regional Referral Hospitals in Uganda. These were categorized from day when confirmed positive as follows; category A (0-3 days, 10 samples), category B (4-7 days, 20 samples), Category C (8-17 days, 11 samples) and Category D (18-28 days, 20 samples). Plasma was prepared, transported to the testing laboratory and stored at -200C prior to testing. A total of 13 RDTS were tested following manufacturers instructions. Data was entered in Microsoft Excel exported to STATA for computation of sensitivity and specificity. We computed for all possible combinations of 2 of the 13 RDTS (13C2) that were evaluated in parallel algorithm. Results: The individual sensitives of the RDTs ranged between 74% and 18% and there was a general increasing trend across the categories with days since PCR confirmation. A total of 78 possible combinations of the RDTs to be used in parallel was computated. The combinations of the 2 RDTS improved the sensitivities to 90%. Discussion: We demonstrate that use of RDTs in combinations can improve their overall sensitivity. This approach when used on a wider range of combination of RDTs may yield combinations that can give sensitivities that are of diagnostics relevance in mass testing and low resource setting.
Subject
  • Laboratories
  • Proprietary commercial software for Linux
  • Musical groups reestablished in 2009
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software