About: Abstract Nucleic acid amplification tests (NATs) are increasingly being used for diagnosis of respiratory virus infections. The most familiar formats use DNA or RNA target amplification methods for enhanced sensitivity above culture and antigen-based procedures. Although gel and plate-hybridisation methods are still utilised for analysis of amplified products, detection using “real-time” methods which do not require handling of amplified products are favoured in many laboratories. Assays based on nucleic acid amplification and detection can be designed against a broad range of respiratory viruses and have been particularly useful for detection of recently identified viruses such as human metapneumovirus and coronaviruses NL63 and HKU1. However, the wide range of potential pathogens which can cause similar respiratory symptomology and disease makes application of individual diagnostic assays based on detection of DNA and RNA both complex and expensive. One way to resolve this potential problem is to undertake multiplexed nucleic acid amplification reactions with analysis of amplified products by suspension microarray. The Respiratory Virus Panel (RVP) from Luminex Molecular Diagnostics is one example of such an approach which could be made available to diagnostic and public health laboratories for broad spectrum respiratory virus detection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Nucleic acid amplification tests (NATs) are increasingly being used for diagnosis of respiratory virus infections. The most familiar formats use DNA or RNA target amplification methods for enhanced sensitivity above culture and antigen-based procedures. Although gel and plate-hybridisation methods are still utilised for analysis of amplified products, detection using “real-time” methods which do not require handling of amplified products are favoured in many laboratories. Assays based on nucleic acid amplification and detection can be designed against a broad range of respiratory viruses and have been particularly useful for detection of recently identified viruses such as human metapneumovirus and coronaviruses NL63 and HKU1. However, the wide range of potential pathogens which can cause similar respiratory symptomology and disease makes application of individual diagnostic assays based on detection of DNA and RNA both complex and expensive. One way to resolve this potential problem is to undertake multiplexed nucleic acid amplification reactions with analysis of amplified products by suspension microarray. The Respiratory Virus Panel (RVP) from Luminex Molecular Diagnostics is one example of such an approach which could be made available to diagnostic and public health laboratories for broad spectrum respiratory virus detection.
subject
  • Virology
  • Biotechnology
  • Viruses
  • Laboratories
  • Molecular biology
  • Digital television
  • 1898 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software