About: Selection of an appropriate database system for edge IoT devices is one of the essential elements that determine efficient edge-based data analysis in low power wireless sensor networks. This paper presents a comparative analysis of time series databases in the context of edge computing for IoT and Smart Systems. The research focuses on the performance comparison between three time-series databases: TimescaleDB, InfluxDB, Riak TS, as well as two relational databases, PostgreSQL and SQLite. All selected solutions were tested while being deployed on a single-board computer, Raspberry Pi. For each of them, the database schema was designed, based on a data model representing sensor readings and their corresponding timestamps. For performance testing, we developed a small application that was able to simulate insertion and querying operations. The results of the experiments showed that for presented scenarios of reading data, PostgreSQL and InfluxDB emerged as the most performing solutions. For tested insertion scenarios, PostgreSQL turned out to be the fastest. Carried out experiments also proved that low-cost, single-board computers such as Raspberry Pi can be used as small-scale data aggregation nodes on edge device in low power wireless sensor networks, that often serve as a base for IoT-based smart systems.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Selection of an appropriate database system for edge IoT devices is one of the essential elements that determine efficient edge-based data analysis in low power wireless sensor networks. This paper presents a comparative analysis of time series databases in the context of edge computing for IoT and Smart Systems. The research focuses on the performance comparison between three time-series databases: TimescaleDB, InfluxDB, Riak TS, as well as two relational databases, PostgreSQL and SQLite. All selected solutions were tested while being deployed on a single-board computer, Raspberry Pi. For each of them, the database schema was designed, based on a data model representing sensor readings and their corresponding timestamps. For performance testing, we developed a small application that was able to simulate insertion and querying operations. The results of the experiments showed that for presented scenarios of reading data, PostgreSQL and InfluxDB emerged as the most performing solutions. For tested insertion scenarios, PostgreSQL turned out to be the fastest. Carried out experiments also proved that low-cost, single-board computers such as Raspberry Pi can be used as small-scale data aggregation nodes on edge device in low power wireless sensor networks, that often serve as a base for IoT-based smart systems.
Subject
  • Cloud applications
  • Database theory
  • Educational hardware
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software