About: Abstract The lipid bilayer is one of the most eloquent and important self-assembled structures in nature. It not only provides a protective container for cells and sub-cellular compartments, but also hosts much of the machinery for cellular communication and transport across the cell membrane. Solid supported lipid bilayers provide an excellent model system for studying the surface chemistry of the cell. Moreover, they are accessible to a wide variety of surface-specific analytical techniques. This makes it possible to investigate processes such as cell signaling, ligand–receptor interactions, enzymatic reactions occurring at the cell surface, as well as pathogen attack. In this review, the following membrane systems are discussed: black lipid membranes, solid supported lipid bilayers, hybrid lipid bilayers, and polymer cushioned lipid bilayers. Examples of how supported lipid membrane technology is interfaced with array based systems by photolithographic patterning, spatial addressing, microcontact printing, and microfluidic patterning are explored. Also, the use of supported lipid bilayers in microfluidic devices for the development of lab-on-a-chip based platforms is examined. Finally, the utility of lipid bilayers in nanotechnology and future directions in this area are discussed.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract The lipid bilayer is one of the most eloquent and important self-assembled structures in nature. It not only provides a protective container for cells and sub-cellular compartments, but also hosts much of the machinery for cellular communication and transport across the cell membrane. Solid supported lipid bilayers provide an excellent model system for studying the surface chemistry of the cell. Moreover, they are accessible to a wide variety of surface-specific analytical techniques. This makes it possible to investigate processes such as cell signaling, ligand–receptor interactions, enzymatic reactions occurring at the cell surface, as well as pathogen attack. In this review, the following membrane systems are discussed: black lipid membranes, solid supported lipid bilayers, hybrid lipid bilayers, and polymer cushioned lipid bilayers. Examples of how supported lipid membrane technology is interfaced with array based systems by photolithographic patterning, spatial addressing, microcontact printing, and microfluidic patterning are explored. Also, the use of supported lipid bilayers in microfluidic devices for the development of lab-on-a-chip based platforms is examined. Finally, the utility of lipid bilayers in nanotechnology and future directions in this area are discussed.
Subject
  • Nanotechnology
  • Cell biology
  • Biological matter
  • Integrated circuits
  • Membrane biology
  • Physical chemistry
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software