AttributesValues
type
value
  • The topology structure of social contacts network has a big impact on dynamic patterns of epidemic spreading and effectiveness of non-pharmaceutical interventions. Corresponding to individuals’ behavioral or functional units, people are commonly organized in small communities, meaning that most of social contacts networks tend to display community structure property. Through empirical investigation and Monte-Carlo simulation on a big H1N1 outbreak in a Chinese university campus, this paper explores the impact of community structure property of social contacts network on epidemic spreading and effectiveness of interventions. A stochastic model based on social contacts networks among students is constructed to simulate this outbreak, revealing that epidemic outbreaks commonly occur in local community. Moreover, effectiveness of three quarantine-based interventions is quantitatively studied by our proposed model, finding that community structure of social networks determines the effects these measures.
subject
  • Epidemics
  • Networks
  • Biological hazards
  • Quarantine facilities
  • Stochastic models
  • Risk analysis methodologies
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software