AttributesValues
type
value
  • Inferring the input grammar accepted by a program is central for a variety of software engineering problems, including parsers verification, grammar-based fuzzing, communication protocol inference, and documentation. Sound and complete active learning techniques have been developed for several classes of languages and the corresponding automaton representation, however there are outstanding challenges that are limiting their effective application to the inference of input grammars. We focus on active learning techniques based on [Formula: see text] and propose two extensions of the Minimally Adequate Teacher framework that allow the efficient learning of the input language of a program in the form of symbolic automata, leveraging the additional information that can extracted from concolic execution. Upon these extensions we develop two learning algorithms that reduce significantly the number of queries required to converge to the correct hypothesis.
subject
  • Machine learning
  • Reasoning
  • Concepts in logic
  • Logic and statistics
  • Logical consequence
  • Sources of knowledge
  • Automata (mechanical)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software