AttributesValues
type
value
  • Abstract Identification of regulatory elements is essential for understanding the mechanism behind regulating gene expression. These regulatory elements—located in or near gene—bind to proteins called transcription factors to initiate the transcription process. Their occurrences are influenced by the GC-content or nucleotide composition. For generating synthetic coding sequences with pre-specified amino acid sequence and desired GC-content, there exist two stochastic methods, multinomial and maximum entropy. Both methods rely on the probability of choosing the codon synonymous for usage in regard to a specific amino acid. In spite the latter exhibited unbiased manner, the produced sequences are not exactly obeying the GC-content constraint. In this paper, we present an algorithmic solution to produce coding sequences that follow exactly a primary amino acid sequence and a desired GC-content. The proposed tool, namely CodSeqGen, depends on random selection for smaller subsets to be traversed using the backtracking approach.
Subject
  • Genetics
  • Gene expression
  • DNA
  • Biophysics
  • Biological classification
  • Molecular biology
  • Stochastic models
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software