AttributesValues
type
value
  • The number of Covid-19 cases is increasing dramatically worldwide. Therefore, the availability of reliable forecasts for the number of cases in the coming days is of fundamental importance. We propose a simple statistical method for short-term real-time forecasting of the number of Covid-19 cases and fatalities in countries that are latecomers -- i.e., countries where cases of the disease started to appear some time after others. In particular, we propose a penalized (LASSO) regression with an error correction mechanism to construct a model of a latecomer in terms of the other countries that were at a similar stage of the pandemic some days before. By tracking the number of cases and deaths in those countries, we forecast through an adaptive rolling-window scheme the number of cases and deaths in the latecomer. We apply this methodology to Brazil, and show that (so far) it has been performing very well. These forecasts aim to foster a better short-run management of the health system capacity.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Member states of Mercosur
  • Occupational safety and health
  • Error detection and correction
  • 1995 albums
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software