value
| - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly identified pathogen causing coronavirus disease 2019 (COVID-19) pandemic. Hydroxychloroquine (HCQ), an antimalarial and anti-inflammatory drug, has been shown to inhibit SARS-CoV-2 infection in vitro and tested in clinical studies. However, lung concentration (6.7 µg/mL) to predict the in vivo antiviral efficacy might not be achievable with the currently proposed oral dosing regimen. Further, a high cumulative doses of HCQ may raise concerns of systemic toxicity, including cardiotoxicity. Here, we described a non-clinical study to investigate the pharmacokinetics of a novel formulation of liposomal HCQ administrated by intratracheal (IT) instillation in Sprague-Dawley (SD) rats which achieved 129.4 µg/g (Cmax) in the lung. Compared to unformulated HCQ administered intravenous (IV), liposomal HCQ with normalized dose showed higher (∼30-fold) lung exposure, longer (∼2.5-fold) half-life in lung, but lower blood exposure with ∼20% of Cmax and 74% of AUC and lower heart exposure with 24% of Cmax and 58% of AUC. In conclusion, the pharmacokinetics results in an animal model demonstrate the proof of concept that inhalable liposomal HCQ may provide clinical benefit and serve as a potential treatment for COVID-19.
|