AttributesValues
type
value
  • Amid the ongoing COVID-19 pandemic, whether COVID-19 patients with high risks can be recovered or not depends, to a large extent, on how early they will be treated appropriately before irreversible consequences are caused to the patients by the virus. In this research, we reported an explainable, intuitive, and accurate machine learning model based on logistic regression to predict the fatality rate of COVID-19 patients using only three important blood biomarkers, including lactic dehydrogenase, lymphocyte (%) and high-sensitivity C-reactive protein, and their interactions. We found that when the fatality probability produced by the logistic regression model was over 0.8, the model had the optimal performance in that it was able to predict patient fatalities more than 11.30 days on average with maximally 34.91 days in advance, an accumulative f1-score of 93.76% and and an accumulative accuracy score of 93.92%. Such a model can be used to identify COVID-19 patients with high risks with three blood biomarkers and help the medical systems around the world plan critical medical resources amid this pandemic.
Subject
  • Virology
  • EC 1.1.1
  • Diagnostic intensive care medicine
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software