About: Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation.
Subject
  • Vaccine-preventable diseases
  • Spectroscopy
  • Healthcare-associated infections
  • Bat virome
  • Companies established in 1929
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software