About: Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
title
  • Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2
Creator
  • Alfa¹, Ronald
  • Chong¹, Yolanda
  • Earnshaw¹, Berton
  • Fogelson¹, Ben
  • Gordon¹, Hannah
  • Haque¹, Imran
  • Jacobson¹, Pamela
  • Low¹, Adeline
  • Victors¹, Mason
  • Authors, ¹ ⁺co-First
  • Davis⁺¹, Chadwick
  • Gibson, Christopher
  • Heiser⁺¹, Katie
  • Hurst², Brett
  • Mclean⁺¹, Peter
  • Miller¹, Ben
source
  • BioRxiv
abstract
has issue date
bibo:doi
  • 10.1101/2020.04.21.054387
has license
  • biorxiv
sha1sum (hex)
  • 408fee3533b80fd809fd95f55fd19908bc681ba0
schema:url
resource representing a document's title
schema:publication
  • bioRxiv
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software