AttributesValues
type
value
  • Accurate mortality prediction allows Intensive Care Units (ICUs) to adequately benchmark clinical practice and identify patients with unexpected outcomes. Traditionally, simple statistical models have been used to assess patient death risk, many times with sub-optimal performance. On the other hand deep learning holds promise to positively impact clinical practice by leveraging medical data to assist diagnosis and prediction, including mortality prediction. However, as the question of whether powerful Deep Learning models attend correlations backed by sound medical knowledge when generating predictions remains open, additional interpretability tools are needed to foster trust and encourage the use of AI by clinicians. In this work we show a Deep Learning model trained on MIMIC-III to predict mortality using raw nursing notes, together with visual explanations for word importance. Our model reaches a ROC of 0.8629 (+/-0.0058), outperforming the traditional SAPS-II score and providing enhanced interpretability when compared with similar Deep Learning approaches.
subject
  • Medicine
  • Intensive care medicine
  • Statistical models
  • Mathematical modeling
  • Hospital departments
  • Scientific modeling
  • Statistical theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software