About: The recent outbreak of a novel coronavirus and its rapid spread underlines the importance of understanding human mobility. Enclosed spaces, such as public transport vehicles (e.g. buses and trains), offer a suitable environment for infections to spread widely and quickly. Investigating the movement patterns and the physical encounters of individuals on public transit systems is thus critical to understand the drivers of infectious disease outbreaks. For instance previous work has explored the impact of recurring patterns inherent in human mobility on disease spread, but has not considered other dimensions such as the distance travelled or the number of encounters. Here, we consider multiple mobility dimensions simultaneously to uncover critical information for the design of effective intervention strategies. We use one month of citywide smart card travel data collected in Sydney, Australia to classify bus passengers along three dimensions, namely the degree of exploration, the distance travelled and the number of encounters. Additionally, we simulate disease spread on the transport network and trace the infection paths. We investigate in detail the transmissions between the classified groups while varying the infection probability and the suspension time of pathogens. Our results show that characterizing individuals along multiple dimensions simultaneously uncovers a complex infection interplay between the different groups of passengers, that would remain hidden when considering only a single dimension. We also identify groups that are more influential than others given specific disease characteristics, which can guide containment and vaccination efforts.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The recent outbreak of a novel coronavirus and its rapid spread underlines the importance of understanding human mobility. Enclosed spaces, such as public transport vehicles (e.g. buses and trains), offer a suitable environment for infections to spread widely and quickly. Investigating the movement patterns and the physical encounters of individuals on public transit systems is thus critical to understand the drivers of infectious disease outbreaks. For instance previous work has explored the impact of recurring patterns inherent in human mobility on disease spread, but has not considered other dimensions such as the distance travelled or the number of encounters. Here, we consider multiple mobility dimensions simultaneously to uncover critical information for the design of effective intervention strategies. We use one month of citywide smart card travel data collected in Sydney, Australia to classify bus passengers along three dimensions, namely the degree of exploration, the distance travelled and the number of encounters. Additionally, we simulate disease spread on the transport network and trace the infection paths. We investigate in detail the transmissions between the classified groups while varying the infection probability and the suspension time of pathogens. Our results show that characterizing individuals along multiple dimensions simultaneously uncovers a complex infection interplay between the different groups of passengers, that would remain hidden when considering only a single dimension. We also identify groups that are more influential than others given specific disease characteristics, which can guide containment and vaccination efforts.
Subject
  • Epidemiology
  • Infectious diseases
  • Confidentiality
  • 1788 establishments in Australia
  • Port cities in New South Wales
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software