About: Nanobiosensors (NBSs) are a class of chemical sensors which are sensitive to a physical or chemical stimulus (heat, acidity, metabolism transformations) that conveys information about vital processes. NBSs detect physiological signals and convert them into standardized signals, often electrical, to be quantified from analog to digital. NBSs are classified according to the transducer element (electrochemical, piezoelectric, optical, and thermal) in accordance with biorecognition principle (enzyme recognition, affinity immunoassay, whole sensors, DNA). NBSs have varied forms, depending on the degree of interpretation of natural processes in plants. Plant nanobionics uses mathematical models based on qualitative and less quantitative records. NBSs can give information about endogenous concentrations or endogenous fluxes of signaling molecules (phytohormones). The properties of NBSs are temporal and spatial resolution, the ability of being used without significantly interfering with the system. NBSs with the best properties are the optically genetically coded NBSs, but each NBS needs specific development efforts. NBS technologies using antibodies as a recognition domain are generic and tend to be more invasive, and there are examples of their use in plant nanobionics. Through opportunities that develop along with technologies, we hope that more and more NBSs will become available for plant nanobionics. The main advantages of NBSs are short analysis time, low-cost tests and portability, real-time measurements, and remote control.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Nanobiosensors (NBSs) are a class of chemical sensors which are sensitive to a physical or chemical stimulus (heat, acidity, metabolism transformations) that conveys information about vital processes. NBSs detect physiological signals and convert them into standardized signals, often electrical, to be quantified from analog to digital. NBSs are classified according to the transducer element (electrochemical, piezoelectric, optical, and thermal) in accordance with biorecognition principle (enzyme recognition, affinity immunoassay, whole sensors, DNA). NBSs have varied forms, depending on the degree of interpretation of natural processes in plants. Plant nanobionics uses mathematical models based on qualitative and less quantitative records. NBSs can give information about endogenous concentrations or endogenous fluxes of signaling molecules (phytohormones). The properties of NBSs are temporal and spatial resolution, the ability of being used without significantly interfering with the system. NBSs with the best properties are the optically genetically coded NBSs, but each NBS needs specific development efforts. NBS technologies using antibodies as a recognition domain are generic and tend to be more invasive, and there are examples of their use in plant nanobionics. Through opportunities that develop along with technologies, we hope that more and more NBSs will become available for plant nanobionics. The main advantages of NBSs are short analysis time, low-cost tests and portability, real-time measurements, and remote control.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software