About: Regulatory T cells (T(regs)) are a subset of T cells that are responsible for maintaining peripheral immune tolerance and homeostasis. The hallmark of T(regs) is the expression of the forkhead box P3 (FoxP3) transcription factor. Natural regulatory T cells (nT(regs)) are a distinct population of T cells that express CD4 and FoxP3. nTregs develop in the thymus and function in maintaining peripheral immune tolerance. Other CD4(+), CD4(-)CD8(-), and CD8(+)CD28(-) T cells can be induced to acquire regulatory function by antigenic stimulation, depending on the cytokine milieu. Inducible (or adaptive) T(regs) frequently express high levels of the interleukin 2 receptor (CD25). Atypical T(regs) express FoxP3 and CD4 but have no surface expression of CD25. Type 1 regulatory T cells (Tr1 cells) produce IL-10, while T helper 3 cells (Th3) produce TGF-β. The function of inducible T(regs) is presumably to maintain immune homeostasis, especially in the context of chronic inflammation or infection. Induction of T(regs) in coronaviral infections protects against the more severe forms of the disease attributable to the host response. However, arteriviruses have exploited these T cell subsets as a means to dampen the immune response allowing for viral persistence. T(reg) induction or activation in the pathogenesis of disease has been described in both porcine reproductive and respiratory syndrome virus, lactate dehydrogenase elevating virus, and mouse hepatitis virus. This review discusses the development and biology of regulatory T cells in the context of arteriviral and coronaviral infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Regulatory T cells (T(regs)) are a subset of T cells that are responsible for maintaining peripheral immune tolerance and homeostasis. The hallmark of T(regs) is the expression of the forkhead box P3 (FoxP3) transcription factor. Natural regulatory T cells (nT(regs)) are a distinct population of T cells that express CD4 and FoxP3. nTregs develop in the thymus and function in maintaining peripheral immune tolerance. Other CD4(+), CD4(-)CD8(-), and CD8(+)CD28(-) T cells can be induced to acquire regulatory function by antigenic stimulation, depending on the cytokine milieu. Inducible (or adaptive) T(regs) frequently express high levels of the interleukin 2 receptor (CD25). Atypical T(regs) express FoxP3 and CD4 but have no surface expression of CD25. Type 1 regulatory T cells (Tr1 cells) produce IL-10, while T helper 3 cells (Th3) produce TGF-β. The function of inducible T(regs) is presumably to maintain immune homeostasis, especially in the context of chronic inflammation or infection. Induction of T(regs) in coronaviral infections protects against the more severe forms of the disease attributable to the host response. However, arteriviruses have exploited these T cell subsets as a means to dampen the immune response allowing for viral persistence. T(reg) induction or activation in the pathogenesis of disease has been described in both porcine reproductive and respiratory syndrome virus, lactate dehydrogenase elevating virus, and mouse hepatitis virus. This review discusses the development and biology of regulatory T cells in the context of arteriviral and coronaviral infection.
Subject
  • Virology
  • Immunology
  • T cells
  • Immune system
  • Clusters of differentiation
  • Human cells
  • Mammal anatomy
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software