AttributesValues
type
value
  • Abstract The DcCoV UAE-HKU23 coronavirus is a newly-found betacoronavirus (betaCoV) that can infect human cells. The viral spike protein plays pivotal roles in mediating receptor-recognition and membrane-fusion, and is therefore a key factor involved in viral pathogenesis and inter-species transmission. Here we reported the structural and functional characterization of the spike N-terminal domain (NTD) from DcCoV UAE-HKU23 (HKU23-NTD). Via mucin-binding assays, we showed that HKU23-NTD is able to bind sugars. We further solved the structure of HKU23-NTD, performed structure-guided mutagenesis and successfully located the potential sugar-binding pockets in the structure. Furthermore, via comparison of available betaCoV NTD structures, we demonstrated that betaCoV NTDs contain a conserved β-sandwich core, but exhibit variant folds in the peripheral elements located in the top-ceiling region and on the lateral side. While showing different compositions and structures, these peripheral elements are topologically equivalent β-sandwich-core insertions, highlighting a divergent evolution process for betaCoVs to form different lineages.
subject
  • Virology
  • Proteins
  • Posttranslational modification
  • Protein structure
  • Membrane biology
  • Protein structural motifs
  • Virus genera
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software