AttributesValues
type
value
  • Abstract Infectious pancreatic necrosis virus (IPNV) is a major pathogen in the aquaculture industry worldwide. Factors contributing to IPNV pathogenicity are yet poorly understood. Indications of IPNV being able to evade or counteract innate host defense come from its lack of ability to induce strong type I interferon (IFN) responses in cell culture. We show here that addition of salmon rIFN-α1 to cells prior to IPNV infection halts the viral protein synthesis and prevents processing of pVP2 into mature VP2. Furthermore, compared to pre-treatment with IFN-α1 the antiviral state in cells infected with IPNV prior to IFN-treatment, was antagonized by IPNV, as detected by higher viral titers, faster viral protein synthesis and also by reduced Mx expression. The longer headstart the virus gets, the more prominent is the weakening of IFN signaling. IPNV VP4 and VP5 inhibit IFN-induced expression from the Mx promoter, indicating that these proteins contribute to the antagonistic effect.
Subject
  • Virology
  • Cytokines
  • Antivirals
  • Birnaviridae
  • Immunostimulants
  • Animal viral diseases
  • Sustainable food system
  • Fish diseases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software