About: Abstract Multiplex network theory is widely introduced to deepen the understanding of the dynamical interplay between self-protective behavior and epidemic spreading. Most of the existing studies assumed that all infected individuals can transmit disease- related information or can be perceived by their neighbors. However, owing to lack of distinct symptoms for patients in the initial stage of infection, the disease information cannot be transmitted in the population, which may lead to the wrong perception of infection risk and inappropriate behavior response. In this work, we divide infected individuals into Exposed-state (without obvious clinical symptoms) individuals and Infected-state (with evident clinical symptoms) individuals, both of whom can spread disease, but only Infected-state individuals can diffuse disease information. Then, in this work we establish UAU-SEIS (Unaware–Aware–Unaware–Susceptible–Exposed–Infected–Susceptible) model in multiplex networks and analyze the effect of asymptomatic infection and the isolation of Infected-state individuals on the density of infection and the epidemic threshold. Furthermore, we extend the UAU-SEIS model by taking the individual heterogeneity into consideration. Combined Markov chain approach and Monte-Carlo Simulations, we find that asymptomatic infection has an effect on the density of infected individuals and the epidemic threshold, and the extent of the effect is influenced by whether Infected-state individuals are isolated or treated. In addition, results show that the individual heterogeneity can lower the density of infected individuals, but cannot enhance the epidemic threshold.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Multiplex network theory is widely introduced to deepen the understanding of the dynamical interplay between self-protective behavior and epidemic spreading. Most of the existing studies assumed that all infected individuals can transmit disease- related information or can be perceived by their neighbors. However, owing to lack of distinct symptoms for patients in the initial stage of infection, the disease information cannot be transmitted in the population, which may lead to the wrong perception of infection risk and inappropriate behavior response. In this work, we divide infected individuals into Exposed-state (without obvious clinical symptoms) individuals and Infected-state (with evident clinical symptoms) individuals, both of whom can spread disease, but only Infected-state individuals can diffuse disease information. Then, in this work we establish UAU-SEIS (Unaware–Aware–Unaware–Susceptible–Exposed–Infected–Susceptible) model in multiplex networks and analyze the effect of asymptomatic infection and the isolation of Infected-state individuals on the density of infection and the epidemic threshold. Furthermore, we extend the UAU-SEIS model by taking the individual heterogeneity into consideration. Combined Markov chain approach and Monte-Carlo Simulations, we find that asymptomatic infection has an effect on the density of infected individuals and the epidemic threshold, and the extent of the effect is influenced by whether Infected-state individuals are isolated or treated. In addition, results show that the individual heterogeneity can lower the density of infected individuals, but cannot enhance the epidemic threshold.
Subject
  • Epidemiology
  • Infectious diseases
  • Symptoms
  • Human diseases and disorders
  • Medical terminology
  • Scientific modeling
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software