AttributesValues
type
value
  • The transformation of graphs and graph-like structures is ubiquitous in computer science. When a system is described by graph-transformation rules, it is often desirable that the rules are both terminating and confluent so that rule applications in an arbitrary order produce unique resulting graphs. However, there are application scenarios where the rules are not globally confluent but confluent on a subclass of graphs that are of interest. In other words, non-resolvable conflicts can only occur on graphs that are considered as “garbage”. In this paper, we introduce the notion of confluence up to garbage and generalise Plump’s critical pair lemma for double-pushout graph transformation, providing a sufficient condition for confluence up to garbage by non-garbage critical pair analysis. We apply our results to language recognition by backtracking-free graph reduction, showing how to establish that a graph language can be decided by a system which is confluent up to garbage. We present two case studies with backtracking-free graph reduction systems which recognise a class of flow diagrams and a class of labelled series-parallel graphs, respectively. Both systems are non-confluent but confluent up to garbage.
subject
  • Pattern matching
  • Graph theory
  • Concepts in metaphysics
  • Necessity and sufficiency
  • Search algorithms
  • Graph algorithms
  • Algorithm description languages
  • Graph rewriting
  • Rewriting systems
  • Implementation of functional programming languages
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software