value
| - Nutrient pollution and greenhouse gas emissions related to crop agriculture and confined animal feeding operations (CAFOs) in the US have changed substantially in recent years, in amounts and forms. This review is intended to provide a broad view of how nutrient inputs—from fertilizer and CAFOs—as well as atmospheric NH(3) and greenhouse gas emissions, are changing regionally within the US and how these changes compare with nutrient inputs from human wastewater. Use of commercial nitrogen (N) fertilizer in the US, which now exceeds 12,000,000 metric tonnes (MT) continues to increase, at a rate of 60,000 MT per year, while that of phosphorus (P) has remained nearly constant over the past decade at around 1,800,000 MT. The number of CAFOs in the US has increased nearly 10% since 2012, driven largely by a near 13% increase in hog production. The annualized inventory of cattle, dairy cows, hogs, broiler chickens and turkeys is approximately 8.7 billion, but CAFOs are highly regionally concentrated by animal sector. Country-wide, N applied by fertilizer is about threefold greater than manure N inputs, but for P these inputs are more comparable. Total manure inputs now exceed 4,000,000 MT as N and 1,400,000 MT as P. For both N and P, inputs and proportions vary widely by US region. The waste from hog and dairy operations is mainly held in open lagoons that contribute to NH(3) and greenhouse gas (as CH(4) and N(2)O) emissions. Emissions of NH(3) from animal waste in 2019 were estimated at > 4,500,000 MT. Emissions of CH(4) from manure management increased 66% from 1990 to 2017 (that from dairy increased 134%, cattle 9.6%, hogs 29% and poultry 3%), while those of N(2)O increased 34% over the same time period (dairy 15%, cattle 46%, hogs 58%, and poultry 14%). Waste from CAFOs contribute substantially to nutrient pollution when spread on fields, often at higher N and P application rates than those of commercial fertilizer. Managing the runoff associated with fertilizer use has improved with best management practices, but reducing the growing waste from CAFO operations is essential if eutrophication and its effects on fresh and marine waters–namely hypoxia and harmful algal blooms (HABs)—are to be reduced. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10533-020-00691-6) contains supplementary material, which is available to authorized users.
|