AttributesValues
type
value
  • The fast accumulation of viral metagenomic data has contributed significantly to new RNA virus discovery. However, the short read size, complex composition, and large data size can all make taxonomic analysis difficult. In particular, commonly used alignment-based methods are not ideal choices for detecting new viral species. In this work, we present a novel hierarchical classification model named CHEER, which can conduct read-level taxonomic classification from order to genus for new species. By combining k-mer embedding-based encoding, hierarchically organized CNNs, and carefully trained rejection layer, CHEER is able to assign correct taxonomic labels for reads from new species. We tested CHEER on both simulated and real sequencing data. The results show that CHEER can achieve higher accuracy than popular alignment-based and alignment-free taxonomic assignment tools. The source code, scripts, and pre-trained parameters for CHEER are available via GitHub:https://github.com/KennthShang/CHEER.
Subject
  • Biological classification
  • Plant taxonomy
  • Project management software
  • Remote companies
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software