About: All cellular functions, ranging from regular cell maintenance and homeostasis, specialized functions specific to cellular types, or generating responses due to external stimulus, are mediated by proteins within the cell. Regulation of these proteins allows the cell to alter its behavior under different circumstances. A major mechanism of protein regulation is utilizing protein kinases and phosphatases; enzymes that catalyze the transfer of phosphates between substrates [1]. Proteins involved in phosphate signaling are well studied and include kinases and phosphatases that catalyze opposing reactions regulating both structure and function of the cell. Kinomics is the study of kinases, phosphatases and their targets, and has been used to study the functional changes in numerous diseases and infectious diseases with aims to delineate the cellular functions affected. Identifying the phosphate signaling pathways changed by certain diseases or infections can lead to novel therapeutic targets. However, a daunting 518 putative protein kinase genes have been identified [2], indicating that this protein family is very large and complex. Identifying which enzymes are specific to a particular disease can be a laborious task. In this review, we will provide information on large-scale systems biology methodologies that allow global screening of the kinome to more efficiently identify which kinase pathways are pertinent for further study.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • All cellular functions, ranging from regular cell maintenance and homeostasis, specialized functions specific to cellular types, or generating responses due to external stimulus, are mediated by proteins within the cell. Regulation of these proteins allows the cell to alter its behavior under different circumstances. A major mechanism of protein regulation is utilizing protein kinases and phosphatases; enzymes that catalyze the transfer of phosphates between substrates [1]. Proteins involved in phosphate signaling are well studied and include kinases and phosphatases that catalyze opposing reactions regulating both structure and function of the cell. Kinomics is the study of kinases, phosphatases and their targets, and has been used to study the functional changes in numerous diseases and infectious diseases with aims to delineate the cellular functions affected. Identifying the phosphate signaling pathways changed by certain diseases or infections can lead to novel therapeutic targets. However, a daunting 518 putative protein kinase genes have been identified [2], indicating that this protein family is very large and complex. Identifying which enzymes are specific to a particular disease can be a laborious task. In this review, we will provide information on large-scale systems biology methodologies that allow global screening of the kinome to more efficiently identify which kinase pathways are pertinent for further study.
Subject
  • Protein kinases
  • Cell biology
  • Neurochemistry
  • Protein biosynthesis
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software