AttributesValues
type
value
  • Here we show an interplay between the structures present in ionization tracks and nucleocapsid RNA structural biology, using fast ion beam inactivation of the severe acute respiratory syndrome coronavirus (SARS-CoV) virion as an example. This interplay is one of the key factors in predicting dose-inactivation curves for high energy ion beam inactivation of virions. We also investigate the adaptation of well-established cross-section data derived from radiation interactions with water to the interactions involving the components of a virion, going beyond the density-scaling approximation developed previously. We conclude that solving one of the grand challenges of structural biology — the determination of RNA tertiary/quaternary structure structure — is intimately linked to predicting ion-beam inactivation of viruses and that the two problems can be mutually informative. Indeed, our simulations show that fast ion beams have a key role to play in elucidating RNA tertiary/quaternary structure.
Subject
  • Virology
  • Ionization
  • Ions
  • Accelerator physics
  • Molecular biology
  • Physical chemistry
  • Plasma physics
  • Thin film deposition
  • Semiconductor device fabrication
  • Semiconductor analysis
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software