About: Studies in animals and humans link both physical and psychological stress with an increased incidence and severity of respiratory infections. For this manuscript we define stress as the physiological responses an individual undergoes while adjusting to a continually changing environment. It is known that stressors of various types (psychological/physical) can alter the physiological levels of certain hormones, chemokines and cytokines. These alterations send information to the central nervous system to take necessary action which then sends messages to appropriate organs/tissues/cells to respond. These messages can either activate or suppress the immune system as needed and failure to compensate for this by the body can lead to serious health-related problems. Little is known how stress affects disease susceptibility, yet understanding this mechanism is important for developing effective treatments, and for improving health and food quality. The current review focuses on (a) the effects of psychological stressors in humans and animals, (b) various methodologies employed to understand stress responses and their outcomes, and (c) the current status of the attempts to correlate stress and disease with respiratory disease as model system. The methodologies included in this review span traditional epidemiological, behavioral and immunological studies to current high throughput genomic, proteomic, metabolomic/metabonomic approaches. With the advent of various newer omics and bioinformatics methodologies we postulate that it will become feasible to understand the mechanisms through which stress can influence disease onset. Although the literature in this area is limited because of the infancy of this research area, the objective of this review is to illustrate the power of new approaches to address complex biological questions. These new approaches will also aid in our understanding how these processes are related to the dynamics and kinetics of changes in expression of multiple genes at various levels.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Studies in animals and humans link both physical and psychological stress with an increased incidence and severity of respiratory infections. For this manuscript we define stress as the physiological responses an individual undergoes while adjusting to a continually changing environment. It is known that stressors of various types (psychological/physical) can alter the physiological levels of certain hormones, chemokines and cytokines. These alterations send information to the central nervous system to take necessary action which then sends messages to appropriate organs/tissues/cells to respond. These messages can either activate or suppress the immune system as needed and failure to compensate for this by the body can lead to serious health-related problems. Little is known how stress affects disease susceptibility, yet understanding this mechanism is important for developing effective treatments, and for improving health and food quality. The current review focuses on (a) the effects of psychological stressors in humans and animals, (b) various methodologies employed to understand stress responses and their outcomes, and (c) the current status of the attempts to correlate stress and disease with respiratory disease as model system. The methodologies included in this review span traditional epidemiological, behavioral and immunological studies to current high throughput genomic, proteomic, metabolomic/metabonomic approaches. With the advent of various newer omics and bioinformatics methodologies we postulate that it will become feasible to understand the mechanisms through which stress can influence disease onset. Although the literature in this area is limited because of the infancy of this research area, the objective of this review is to illustrate the power of new approaches to address complex biological questions. These new approaches will also aid in our understanding how these processes are related to the dynamics and kinetics of changes in expression of multiple genes at various levels.
Subject
  • Immune system
  • Central nervous system
  • Physiology
  • Omics
  • Psychological theories
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software