About: Automated compilation error repair, the problem of suggesting fixes to buggy programs that fail to compile, has pedagogical applications for novice programmers who find compiler error messages cryptic and unhelpful. Existing works frequently involve black-box application of generative models, e.g. sequence-to-sequence prediction (TRACER) or reinforcement learning (RLAssist). Although convenient, this approach is inefficient at targeting specific error types as well as increases training costs. We present MACER, a novel technique for accelerated error repair based on a modular segregation of the repair process into repair identification and repair application. MACER uses powerful yet inexpensive learning techniques such as multi-label classifiers and rankers to first identify the type of repair required and then apply the suggested repair. Experiments indicate that this fine-grained approach offers not only superior error correction, but also much faster training and prediction. On a benchmark dataset of 4K buggy programs collected from actual student submissions, MACER outperforms existing methods by 20% at suggesting fixes for popular errors while being competitive or better at other errors. MACER offers a training time speedup of [Formula: see text] over TRACER and [Formula: see text] over RLAssist, and a test time speedup of [Formula: see text] over both.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Automated compilation error repair, the problem of suggesting fixes to buggy programs that fail to compile, has pedagogical applications for novice programmers who find compiler error messages cryptic and unhelpful. Existing works frequently involve black-box application of generative models, e.g. sequence-to-sequence prediction (TRACER) or reinforcement learning (RLAssist). Although convenient, this approach is inefficient at targeting specific error types as well as increases training costs. We present MACER, a novel technique for accelerated error repair based on a modular segregation of the repair process into repair identification and repair application. MACER uses powerful yet inexpensive learning techniques such as multi-label classifiers and rankers to first identify the type of repair required and then apply the suggested repair. Experiments indicate that this fine-grained approach offers not only superior error correction, but also much faster training and prediction. On a benchmark dataset of 4K buggy programs collected from actual student submissions, MACER outperforms existing methods by 20% at suggesting fixes for popular errors while being competitive or better at other errors. MACER offers a training time speedup of [Formula: see text] over TRACER and [Formula: see text] over RLAssist, and a test time speedup of [Formula: see text] over both.
subject
  • Statistical models
  • Machine learning
  • Classification algorithms
  • Education terminology
  • Error detection and correction
  • Probabilistic models
  • Computer errors
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software