About: In this study, estimates of the growth rate of new infections, based on the growth rate of new laboratory-confirmed cases, were used to provide a statistical basis for in-depth research into the epidemiological patterns of H7N9 epidemics. The incubation period, interval from onset to laboratory confirmation, and confirmation time for all laboratory-confirmed cases of H7N9 avian influenza in Mainland China, occurring between January 2013 and June 2017, were used as the statistical data. Stochastic processes theory and maximum likelihood were used to calculate the growth rate of new infections. Time-series analysis was then performed to assess correlations between the time series of new infections and new laboratory-confirmed cases. The rate of new infections showed significant seasonal fluctuation. Laboratory confirmation was delayed by a period of time longer than that of the infection (average delay, 13 days; standard deviation, 6.8 days). At the lags of −7.5 and −15 days, respectively, the time-series of new infections and new confirmed cases were significantly correlated; the cross correlation coefficients (CCFs) were 0.61 and 0.16, respectively. The temporal distribution characteristics of new infections and new laboratory-confirmed cases were similar and strongly correlated.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • In this study, estimates of the growth rate of new infections, based on the growth rate of new laboratory-confirmed cases, were used to provide a statistical basis for in-depth research into the epidemiological patterns of H7N9 epidemics. The incubation period, interval from onset to laboratory confirmation, and confirmation time for all laboratory-confirmed cases of H7N9 avian influenza in Mainland China, occurring between January 2013 and June 2017, were used as the statistical data. Stochastic processes theory and maximum likelihood were used to calculate the growth rate of new infections. Time-series analysis was then performed to assess correlations between the time series of new infections and new laboratory-confirmed cases. The rate of new infections showed significant seasonal fluctuation. Laboratory confirmation was delayed by a period of time longer than that of the infection (average delay, 13 days; standard deviation, 6.8 days). At the lags of −7.5 and −15 days, respectively, the time-series of new infections and new confirmed cases were significantly correlated; the cross correlation coefficients (CCFs) were 0.61 and 0.16, respectively. The temporal distribution characteristics of new infections and new laboratory-confirmed cases were similar and strongly correlated.
subject
  • Clinical research
  • Mathematical and quantitative methods (economics)
  • Subtypes of Influenza A virus
  • Defunct magazines of Singapore
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software