About: Severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CL(pro)) mediates extensive proteolytic processing of replicase polyproteins, and is considered a promising target for anti-SARS drug development. Here we present a rapid and high-throughput screening method to study the substrate specificity of SARS-CoV 3CL(pro). Six target amino acid positions flanking the SARS-CoV 3CL(pro) cleavage site were investigated. Each batch of mixed peptide substrates with defined amino acid substitutions at the target amino acid position was synthesized via the “cartridge replacement” approach and was subjected to enzymatic cleavage by recombinant SARS-CoV 3CL(pro). Susceptibility of each peptide substrate to SARS-CoV 3CL(pro) cleavage was monitored simultaneously by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CL(pro)-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CL(pro) that is facing the P1′ position is suggested to be occupied by acidic amino acids, thus the P1′ position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or β-branching amino acids in P3 and P2′ positions may also hinder the binding of SARS-CoV 3CL(pro). This study generates a comprehensive overview of SARS-CoV 3CL(pro) substrate specificity, which serves as the design basis of synthetic peptide-based SARS-CoV 3CL(pro) inhibitors. Our experimental approach is believed to be widely applicable for investigating the substrate specificity of other proteases in a rapid and high-throughput manner that is compatible for future automated analysis.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CL(pro)) mediates extensive proteolytic processing of replicase polyproteins, and is considered a promising target for anti-SARS drug development. Here we present a rapid and high-throughput screening method to study the substrate specificity of SARS-CoV 3CL(pro). Six target amino acid positions flanking the SARS-CoV 3CL(pro) cleavage site were investigated. Each batch of mixed peptide substrates with defined amino acid substitutions at the target amino acid position was synthesized via the “cartridge replacement” approach and was subjected to enzymatic cleavage by recombinant SARS-CoV 3CL(pro). Susceptibility of each peptide substrate to SARS-CoV 3CL(pro) cleavage was monitored simultaneously by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CL(pro)-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CL(pro) that is facing the P1′ position is suggested to be occupied by acidic amino acids, thus the P1′ position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or β-branching amino acids in P3 and P2′ positions may also hinder the binding of SARS-CoV 3CL(pro). This study generates a comprehensive overview of SARS-CoV 3CL(pro) substrate specificity, which serves as the design basis of synthetic peptide-based SARS-CoV 3CL(pro) inhibitors. Our experimental approach is believed to be widely applicable for investigating the substrate specificity of other proteases in a rapid and high-throughput manner that is compatible for future automated analysis.
subject
  • Metabolism
  • EC 3.4
  • Chemical reactions
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software