About: Forecasting COVID-19 epidemic in India and high incidence states using SIR and logistic growth models   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
has title
  • Forecasting COVID-19 epidemic in India and high incidence states using SIR and logistic growth models
Creator
  • Asirvatham, Edwin
  • Jeyaseelan, L
  • Joy, Melvin
  • Malavika, B
  • Marimuthu, S
  • Nadaraj, Ambily
  • Sam, Edwin
Source
  • Elsevier; Medline; PMC
abstract
has issue date
bibo:doi
  • 10.1016/j.cegh.2020.06.006
bibo:pmid
  • 32838058
has license
  • no-cc
sha1sum (hex)
  • 5c31ad02f6f10c75877c3066f1fecee9fe867dcc
schema:url
resource representing a document's title
has PubMed Central identifier
  • PMC7319934
has PubMed identifier
  • 32838058
schema:publication
  • Clin Epidemiol Glob Health
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software