About: Many countries are currently in a state of lockdown due to the SARS-CoV-2 pandemic. One key requirement to safely transition out of lockdown is the continuous testing of the population to identify infected subjects. Currently, detection is performed at points of care using quantitative reverse-transcription PCR, thus requiring dedicated professionals and equipment. Here, we developed a protocol based on reverse transcribed loop-mediated isothermal amplification for the detection of SARS-CoV-2. This protocol is applied directly to SARS-CoV-2 nose and throat swabs, with no RNA purification step required. We tested this protocol on over 180 suspected patients, and compared the results to those obtained using the standard method. We further succeeded in applying the protocol to self-collected saliva samples from confirmed cases. Since the proposed protocol can detect SARS-CoV-2 from saliva and provides on-the-spot results, it allows simple and continuous surveillance of the community. IMPACT STATEMENT: Humanity is currently experiencing a global pandemic with devastating implications on human health and the economy. Most countries are gradually exiting their lockdown state. We are currently lacking rapid and simple viral detections, especially methods that can be performed in the household. Here, we applied RT-LAMP directly on human clinical swabs and self-collected saliva samples. We adjusted the method to allow simple and rapid viral detection, with no RNA purification steps. By testing our method on over 180 human samples, we determined its sensitivity, and by applying it to other viruses, we determined its specificity. We believe this method has a promising potential to be applied world-wide as a simple and cheap surveillance test for SARS-CoV-2.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Many countries are currently in a state of lockdown due to the SARS-CoV-2 pandemic. One key requirement to safely transition out of lockdown is the continuous testing of the population to identify infected subjects. Currently, detection is performed at points of care using quantitative reverse-transcription PCR, thus requiring dedicated professionals and equipment. Here, we developed a protocol based on reverse transcribed loop-mediated isothermal amplification for the detection of SARS-CoV-2. This protocol is applied directly to SARS-CoV-2 nose and throat swabs, with no RNA purification step required. We tested this protocol on over 180 suspected patients, and compared the results to those obtained using the standard method. We further succeeded in applying the protocol to self-collected saliva samples from confirmed cases. Since the proposed protocol can detect SARS-CoV-2 from saliva and provides on-the-spot results, it allows simple and continuous surveillance of the community. IMPACT STATEMENT: Humanity is currently experiencing a global pandemic with devastating implications on human health and the economy. Most countries are gradually exiting their lockdown state. We are currently lacking rapid and simple viral detections, especially methods that can be performed in the household. Here, we applied RT-LAMP directly on human clinical swabs and self-collected saliva samples. We adjusted the method to allow simple and rapid viral detection, with no RNA purification steps. By testing our method on over 180 human samples, we determined its sensitivity, and by applying it to other viruses, we determined its specificity. We believe this method has a promising potential to be applied world-wide as a simple and cheap surveillance test for SARS-CoV-2.
subject
  • Animal anatomy
  • Molecular biology
  • Forensic genetics
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software