AttributesValues
type
value
  • In response to the researchers need in the bio-medical domain, we opted for automating the bibliographic research stage. In this context, several classification models of supervised machine learning are used. Namely the SVM, Random Forest, Decision Tree, KNN, and Gradient Boosting. In this paper, we conduct a comparative study between experimental results of full article classification and abstract classification approaches. Furthermore, we evaluate our results by using evaluation metrics such as accuracy, precision, recall and F1-score. We observe that the abstract approach outperforms the full article approach in terms of learning time and efficiency.
subject
  • Bioinformatics
  • Machine learning algorithms
  • Machine learning
  • Classification algorithms
  • Statistical classification
  • Decision trees
  • Ensemble learning
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software