AttributesValues
type
value
  • Many aspects of the study of protein folding and dynamics have been affected by the accumulation of data about native protein structures and recent advances in machine learning. Computational methods for predicting protein structures from their sequences are now heavily based on machine learning tools and on approaches that extract knowledge and rules from data using probabilistic models. Many of these methods use scoring functions to determine which structure best fits a native protein sequence. Using computational approaches, we obtained two scoring functions: knowledge-based energy and likelihood of base frequency, and we compared their accuracy in measuring the sequence structure fit. We compared the machine learning models’ accuracy of predictions for knowledge-based energy and likelihood values to validate our results, showing that likelihood is a more accurate scoring function than knowledge-based energy.
Subject
  • Learning
  • Molecular modelling
  • Machine learning
  • Protein structure
  • Cybernetics
  • Stereochemistry
  • Statistical theory
  • Computational chemistry
  • Intermolecular forces
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software