About: Contrasting results have been reported concerning the association of a splice-site polymorphism (rs10774671) in OAS1 with multiple sclerosis (MS). We analysed two OAS1 regions encompassing alternatively spliced exons. While the region carrying the splice-site variant is neutrally evolving, a signature of long-standing balancing selection was observed across an alternative exon 7. Analysis of variants in this exon identified an insertion/deletion polymorphism (rs11352835, A/−) that originates predicted products with distinct C termini. This variant is located along the major branch of the haplotype genealogy, suggesting that it may represent the selection target. A case/control study for MS indicated that rs11352835 is associated with disease susceptibility (for an allelic model with the deleted allele predisposing to MS, OR 1.27, 95% CI 1.072–1.513, p = 0.010). No association was found between rs10774671 and MS. As the two SNPs are in linkage disequilibrium in Europeans, the previously reported association between rs10774671 and MS susceptibility might be driven by rs11352835, possibly explaining the contrasting results previously observed for the splice-site polymorphism. Thus, we describe a novel susceptibility variant for MS in OAS1 and show that population genetic analyses can be instrumental to the identification of selection targets and, consequently, of functional polymorphisms with an effect on phenotypic traits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00439-011-1053-2) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Contrasting results have been reported concerning the association of a splice-site polymorphism (rs10774671) in OAS1 with multiple sclerosis (MS). We analysed two OAS1 regions encompassing alternatively spliced exons. While the region carrying the splice-site variant is neutrally evolving, a signature of long-standing balancing selection was observed across an alternative exon 7. Analysis of variants in this exon identified an insertion/deletion polymorphism (rs11352835, A/−) that originates predicted products with distinct C termini. This variant is located along the major branch of the haplotype genealogy, suggesting that it may represent the selection target. A case/control study for MS indicated that rs11352835 is associated with disease susceptibility (for an allelic model with the deleted allele predisposing to MS, OR 1.27, 95% CI 1.072–1.513, p = 0.010). No association was found between rs10774671 and MS. As the two SNPs are in linkage disequilibrium in Europeans, the previously reported association between rs10774671 and MS susceptibility might be driven by rs11352835, possibly explaining the contrasting results previously observed for the splice-site polymorphism. Thus, we describe a novel susceptibility variant for MS in OAS1 and show that population genetic analyses can be instrumental to the identification of selection targets and, consequently, of functional polymorphisms with an effect on phenotypic traits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00439-011-1053-2) contains supplementary material, which is available to authorized users.
subject
  • Multiple sclerosis
  • Genealogy
  • Classical genetics
  • Epstein–Barr virus-associated diseases
  • Ailments of unknown cause
  • RTT(full)
  • RTTNEURO
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software