About: SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and non-hospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared to healthy and convalescent individuals, with the exception of B lymphocytes which increased. Our findings show increased frequencies of T-cell activation markers (CD69, Ox40, HLA-DR and CD154) in hospitalized patients, with other T-cell activation/exhaustion markers (CD25, PD-L1 and TIGIT) remaining elevated in hospitalized and non-hospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization, followed by an increase in PD1 frequencies in non-hospitalized individuals. Interestingly, many of these changes were found to increase over time in non-hospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation following SARS-CoV-2 infection. Changes in T-cell activation/exhaustion in non-hospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation following SARS-CoV-2 infection highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and non-hospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared to healthy and convalescent individuals, with the exception of B lymphocytes which increased. Our findings show increased frequencies of T-cell activation markers (CD69, Ox40, HLA-DR and CD154) in hospitalized patients, with other T-cell activation/exhaustion markers (CD25, PD-L1 and TIGIT) remaining elevated in hospitalized and non-hospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization, followed by an increase in PD1 frequencies in non-hospitalized individuals. Interestingly, many of these changes were found to increase over time in non-hospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation following SARS-CoV-2 infection. Changes in T-cell activation/exhaustion in non-hospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation following SARS-CoV-2 infection highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.
subject
  • Virology
  • Immunology
  • Immune system
  • COVID-19
  • Clusters of differentiation
  • Copyleft
  • Human cells
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software