About: Hazardous waste management is of paramount importance due to the potential threats posed to the environment and local residents. The design of a hazardous waste management system involves several important decisions, i.e., the determination of the locations and sizes of treatment, recycling and disposal facilities, and organizing the transportation of hazardous waste among different facilities. In this paper, we proposed a novel stochastic bi-objective mixed integer linear program (MILP) to support these decisions in order to reduce the population exposure to risk while simultaneously maintaining a high cost efficiency of the transportation and treatment of hazardous waste. Moreover, considering the inherent uncertainty within the planning horizon, the cost, demand and affected population are defined as stochastic parameters. A sample average approximation based goal programming (SAA-GP) approach is used to solve the mathematical model. The proposed model and solution method are validated through numerical experiments whose results show that uncertainty may not only affect the objective value but also lead to different strategic decisions in the network design of a hazardous waste management system. In this regard, the strategic decisions obtained by the stochastic model is more robust to the change of external environment. Finally, the model is applied in a real-world case study of healthcare waste management in Wuhan, China, in order to show its applicability.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Hazardous waste management is of paramount importance due to the potential threats posed to the environment and local residents. The design of a hazardous waste management system involves several important decisions, i.e., the determination of the locations and sizes of treatment, recycling and disposal facilities, and organizing the transportation of hazardous waste among different facilities. In this paper, we proposed a novel stochastic bi-objective mixed integer linear program (MILP) to support these decisions in order to reduce the population exposure to risk while simultaneously maintaining a high cost efficiency of the transportation and treatment of hazardous waste. Moreover, considering the inherent uncertainty within the planning horizon, the cost, demand and affected population are defined as stochastic parameters. A sample average approximation based goal programming (SAA-GP) approach is used to solve the mathematical model. The proposed model and solution method are validated through numerical experiments whose results show that uncertainty may not only affect the objective value but also lead to different strategic decisions in the network design of a hazardous waste management system. In this regard, the strategic decisions obtained by the stochastic model is more robust to the change of external environment. Finally, the model is applied in a real-world case study of healthcare waste management in Wuhan, China, in order to show its applicability.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software