About: Aphid saliva plays important roles in aphid-host interactions, such as assisting aphid digestion, detoxification, activating or suppressing plant defenses. The grain aphid, Sitobion avenae, is one of the most devastating pests of cereals worldwide. In this study, we performed the transcriptome analysis of salivary glands of S. avenae. A total of 33,079 assembled unigenes were identified in the salivary glands of aphids. Of the all obtained unigenes, 15,833(47.86%) and 10,829(32.73%) unigenes showed high similarity to known proteins in Nr and Swiss-Prot databases respectively. 526 unigenes were predicted to encode secretory proteins, including some digestive and detoxifying enzymes and potential effectors. The RT-PCR and RT-qPCR results showed that all of the 15 most highly expressed putative secretory proteins specifically expressed in salivary glands. Interestingly, 11 of the 15 most highly expressed putative secretory proteins were still not matched to function-known proteins. We also detected the expression of 9 interested putative secretory proteins in aphid different tissues, including some digestive and detoxifying enzymes, effectors and Ca(2+) binding proteins. The results showed that only glutathione-S-transferase 1 was specifically expressed in salivary glands. These findings provide a further insight into the identification of potential effectors involving in aphid-cereals interactions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Aphid saliva plays important roles in aphid-host interactions, such as assisting aphid digestion, detoxification, activating or suppressing plant defenses. The grain aphid, Sitobion avenae, is one of the most devastating pests of cereals worldwide. In this study, we performed the transcriptome analysis of salivary glands of S. avenae. A total of 33,079 assembled unigenes were identified in the salivary glands of aphids. Of the all obtained unigenes, 15,833(47.86%) and 10,829(32.73%) unigenes showed high similarity to known proteins in Nr and Swiss-Prot databases respectively. 526 unigenes were predicted to encode secretory proteins, including some digestive and detoxifying enzymes and potential effectors. The RT-PCR and RT-qPCR results showed that all of the 15 most highly expressed putative secretory proteins specifically expressed in salivary glands. Interestingly, 11 of the 15 most highly expressed putative secretory proteins were still not matched to function-known proteins. We also detected the expression of 9 interested putative secretory proteins in aphid different tissues, including some digestive and detoxifying enzymes, effectors and Ca(2+) binding proteins. The results showed that only glutathione-S-transferase 1 was specifically expressed in salivary glands. These findings provide a further insight into the identification of potential effectors involving in aphid-cereals interactions.
subject
  • Insects in culture
  • Online databases
  • Insect vectors of plant pathogens
  • Agricultural pest insects
  • Extant Permian first appearances
  • Insect pests of ornamental plants
  • Aphids
  • Sternorrhyncha
  • Insect pests of temperate forests
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software