AttributesValues
type
value
  • We present a novel justification why k-means clusters should be (hyper)ball-shaped ones. We show that the clusters must be ball-shaped to attain motion-consistency. If clusters are ball-shaped, one can derive conditions under which two clusters attain the global optimum of k-means. We show further that if the gap is sufficient for perfect separation, then an incremental k-means is able to discover perfectly separated clusters. This is in conflict with the impression left by an earlier publication by Ackerman and Dasgupta. The proposed motion-transformations can be used to the new labeled data for clustering from existent ones.
subject
  • Mathematical analysis
  • Machine learning
  • Calculus
  • Cluster analysis algorithms
  • Mathematical optimization
  • Information technology consulting firms of the United States
  • Companies based in McLean, Virginia
  • Consulting firms of the United States
  • Management consulting firms
  • Superlatives
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software