AttributesValues
type
value
  • The lifetime of a node in wireless sensor networks (WSN) is directly responsible for the longevity of the wireless network. The routing of packets is the most energy-consuming activity for a sensor node. Thus, finding an energy-efficient routing strategy for transmission of packets becomes of utmost importance. The opportunistic routing (OR) protocol is one of the new routing protocol that promises reliability and energy efficiency during transmission of packets in wireless sensor networks (WSN). In this paper, we propose an intelligent opportunistic routing protocol (IOP) using a machine learning technique, to select a relay node from the list of potential forwarder nodes to achieve energy efficiency and reliability in the network. The proposed approach might have applications including e-healthcare services. As the proposed method might achieve reliability in the network because it can connect several healthcare network devices in a better way and good healthcare services might be offered. In addition to this, the proposed method saves energy, therefore, it helps the remote patient to connect with healthcare services for a longer duration with the integration of IoT services.
subject
  • Embedded systems
  • Ambient intelligence
  • Industrial ecology
  • Computer networking
  • Energy conservation
  • Energy efficiency
  • Energy policy
  • Computer networks
  • Wireless networking
  • Sustainable energy
  • Routing
  • Wireless sensor network
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software