About: The rapid discovery of novel viruses using next generation sequencing (NGS) technologies including DNA-Seq and RNA-Seq, has greatly expanded our understanding of viral diversity in recent years. The timely identification of novel viruses using NGS technologies is also important for us to control emerging infectious diseases caused by novel viruses. In this study, we identified a novel duck coronavirus (CoV), distinct with chicken infectious bronchitis virus (IBV), using RNA-Seq. The novel duck-specific CoV was a potential novel species within the genus Gammacoronavirus, as indicated by sequences of three regions in the viral 1b gene. We also performed a survey of CoVs in domestic fowls in China using reverse-transcription polymerase chain reaction (RT-PCR), targeting the viral nucleocapsid (N) gene. A total of 102 CoV positives were identified through the survey. Phylogenetic analysis of the viral N sequences suggested that CoVs in domestic fowls have diverged into several region-specific or host-specific clades or subclades in the world, and IBVs can infect ducks, geese and pigeons, although they mainly circulate in chickens. Moreover, this study provided novel data supporting the notion that some host-specific CoVs other than IBVs circulate in ducks, geese and pigeons, and indicated that the novel duck-specific CoV identified through RNA-Seq in this study is genetically closer to some CoVs circulating in wild water fowls. Taken together, this study shed new insight into the diversity, distribution, evolution and control of avian CoVs.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The rapid discovery of novel viruses using next generation sequencing (NGS) technologies including DNA-Seq and RNA-Seq, has greatly expanded our understanding of viral diversity in recent years. The timely identification of novel viruses using NGS technologies is also important for us to control emerging infectious diseases caused by novel viruses. In this study, we identified a novel duck coronavirus (CoV), distinct with chicken infectious bronchitis virus (IBV), using RNA-Seq. The novel duck-specific CoV was a potential novel species within the genus Gammacoronavirus, as indicated by sequences of three regions in the viral 1b gene. We also performed a survey of CoVs in domestic fowls in China using reverse-transcription polymerase chain reaction (RT-PCR), targeting the viral nucleocapsid (N) gene. A total of 102 CoV positives were identified through the survey. Phylogenetic analysis of the viral N sequences suggested that CoVs in domestic fowls have diverged into several region-specific or host-specific clades or subclades in the world, and IBVs can infect ducks, geese and pigeons, although they mainly circulate in chickens. Moreover, this study provided novel data supporting the notion that some host-specific CoVs other than IBVs circulate in ducks, geese and pigeons, and indicated that the novel duck-specific CoV identified through RNA-Seq in this study is genetically closer to some CoVs circulating in wild water fowls. Taken together, this study shed new insight into the diversity, distribution, evolution and control of avian CoVs.
Subject
  • Virology
  • Molecular biology
  • Virus genera
  • Bird common names
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software