About: BACKGROUND: Phylodynamics, the study of the interaction between epidemiological and pathogen evolutionary processes within and among populations, was originally defined in the context of rapidly evolving viruses and used to characterize transmission dynamics. The concept of phylodynamics has evolved since the early 21(st) century, extending its reach to slower-evolving pathogens, including bacteria and fungi, and to the identification of influential factors in disease spread and pathogen population dynamics. RESULTS: The phylodynamic approach has now become a fundamental building block for the development of comparative phylogenetic tools capable of incorporating epidemiological surveillance data with molecular sequences into a single statistical framework. These innovative tools have greatly enhanced scientific investigations of the temporal and geographical origins, evolutionary history, and ecological risk factors associated with the growth and spread of viruses such as human immunodeficiency virus (HIV), Zika, and dengue and bacteria such as Methicillin-resistant Staphylococcus aureus. CONCLUSIONS: Capitalizing on an extensive review of the literature, we discuss the evolution of the field of infectious disease epidemiology and recent accomplishments, highlighting the advancements in phylodynamics, as well as the challenges and limitations currently facing researchers studying emerging pathogen epidemics across the globe. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s41256-017-0034-y) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: Phylodynamics, the study of the interaction between epidemiological and pathogen evolutionary processes within and among populations, was originally defined in the context of rapidly evolving viruses and used to characterize transmission dynamics. The concept of phylodynamics has evolved since the early 21(st) century, extending its reach to slower-evolving pathogens, including bacteria and fungi, and to the identification of influential factors in disease spread and pathogen population dynamics. RESULTS: The phylodynamic approach has now become a fundamental building block for the development of comparative phylogenetic tools capable of incorporating epidemiological surveillance data with molecular sequences into a single statistical framework. These innovative tools have greatly enhanced scientific investigations of the temporal and geographical origins, evolutionary history, and ecological risk factors associated with the growth and spread of viruses such as human immunodeficiency virus (HIV), Zika, and dengue and bacteria such as Methicillin-resistant Staphylococcus aureus. CONCLUSIONS: Capitalizing on an extensive review of the literature, we discuss the evolution of the field of infectious disease epidemiology and recent accomplishments, highlighting the advancements in phylodynamics, as well as the challenges and limitations currently facing researchers studying emerging pathogen epidemics across the globe. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s41256-017-0034-y) contains supplementary material, which is available to authorized users.
Subject
  • Virology
  • Evolution
  • Infectious diseases
  • 1670s in science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software