About: Rapid in silico design of antibodies targeting SARS-CoV-2 using machine learning and supercomputing   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
has title
  • Rapid in silico design of antibodies targeting SARS-CoV-2 using machine learning and supercomputing
Creator
  • Zemla, Adam
  • Desautels, Thomas
  • Faissol, Daniel
  • Franco, Magdalena
  • Lau, Edmond
Source
  • BioRxiv
abstract
has issue date
bibo:doi
  • 10.1101/2020.04.03.024885
has license
  • biorxiv
sha1sum (hex)
  • 673a9d33f3d75fb307b6c3ea4381b6e4a676ddab
schema:url
resource representing a document's title
schema:publication
  • bioRxiv
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software