AttributesValues
type
value
  • Nanocarriers have been widely employed in the diagnosis and treatment of various diseases. The drug release kinetics and pharmacodynamics could be adjusted by changing the materials, designs, and physicochemical properties of the carriers. Furthermore, the carrier surface could be modified to minimize the particle clearance, increase the circulation duration, escape the biological protective mechanisms, penetrate through physical barriers, and prolong the residence of the drug at the target site. Among lung diseases, acute lung injury has been considered life-threatening with approximately 190,000 cases and 74,500 deaths per year in the USA. Numerous researches have reported the efficacy of drug-encapsulated nanoparticles in the treatment of acute lung injury. The use of nanoparticles could help minimize the effect of airway defenses in the lung, thus provides a prolonged retention, sustained drug release, and targeted delivery to the lung tissues. Meanwhile, the toxicity of nanoparticles in the lungs needs to be investigated thoroughly to alleviate the safety concerns. In this chapter, we discuss the targeted pulmonary delivery of surface-modified nanocarriers to efficiently treat acute lung injury.
subject
  • Lung
  • Intensive care medicine
  • Causes of death
  • Human anatomy by organ
  • Medical equipment
  • Physical chemistry
  • Respiratory physiology
  • Syndromes affecting the respiratory system
  • Respiratory diseases principally affecting the interstitium
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software