About: COVID-19's rapid global spread has driven innovative tools for Big Data Analytics. These have guided organizations in all fields of the health industry to track and minimized the effects of virus. Researchers are required to detect coronaviruses through artificial intelligence, machine learning, and natural language processing, and to gain a complete understanding of the disease. COVID-19 takes place in different countries in the world, with which only big data application and the work of NOSQL databases are suitable. There is a great number of platforms used for processing NOSQL Databases model like: Spark, H2O and Hadoop HDFS/MapReduce, which are proper to control and manage the enormous amount of data. Many challenges faced by large applications programmers, especially those that work on the COVID-19 databases through hybrid data models through different APIs and query. In this context, this paper proposes a storage framework to handle both SQL and NOSQL databases named (COVID-QF) for COVID-19 datasets in order to treat and handle the problems caused by virus spreading worldwide by reducing treatment times. In case of NoSQL database, COVID-QF uses Hadoop HDFS/Map Reduce and Apache Spark. The COVID-QF consists of three Layers: data collection layer, storage layer, and query Processing layer. The data is collected in the data collection layer. The storage layer divides data into collection of data-saving and processing blocks, and it connects the Connector of the spark with different databases engine to reduce time of saving and retrieving. While the Processing layer executes the request query and sends results. The proposed framework used three datasets increased for time for COVID-19 data (COVID-19-Merging, COVID-19-inside-Hubei and COVID-19-ex-Hubei) to test experiments of this study. The results obtained insure the superiority of the COVID-QF framework.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • COVID-19's rapid global spread has driven innovative tools for Big Data Analytics. These have guided organizations in all fields of the health industry to track and minimized the effects of virus. Researchers are required to detect coronaviruses through artificial intelligence, machine learning, and natural language processing, and to gain a complete understanding of the disease. COVID-19 takes place in different countries in the world, with which only big data application and the work of NOSQL databases are suitable. There is a great number of platforms used for processing NOSQL Databases model like: Spark, H2O and Hadoop HDFS/MapReduce, which are proper to control and manage the enormous amount of data. Many challenges faced by large applications programmers, especially those that work on the COVID-19 databases through hybrid data models through different APIs and query. In this context, this paper proposes a storage framework to handle both SQL and NOSQL databases named (COVID-QF) for COVID-19 datasets in order to treat and handle the problems caused by virus spreading worldwide by reducing treatment times. In case of NoSQL database, COVID-QF uses Hadoop HDFS/Map Reduce and Apache Spark. The COVID-QF consists of three Layers: data collection layer, storage layer, and query Processing layer. The data is collected in the data collection layer. The storage layer divides data into collection of data-saving and processing blocks, and it connects the Connector of the spark with different databases engine to reduce time of saving and retrieving. While the Processing layer executes the request query and sends results. The proposed framework used three datasets increased for time for COVID-19 data (COVID-19-Merging, COVID-19-inside-Hubei and COVID-19-ex-Hubei) to test experiments of this study. The results obtained insure the superiority of the COVID-QF framework.
Subject
  • Technology companies based in the San Francisco Bay Area
  • Rensselaer Polytechnic Institute
  • Educational institutions established in 1824
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software