AttributesValues
type
value
  • Personalized recommendation as a practical approach to overcoming information overloading has been widely used in e-learning. Based on learners individual knowledge level, we propose a new model that can predict learners needs for recommendation using dynamic graph-based knowledge tracing. By applying the Gated Recurrent Unit (GRU) and the Attention model, this approach designs a dynamic graph over different time steps. Through learning feature information and topology representation of nodes/learners, this model can predict with high accuracy of 80,63% learners with low knowledge acquisition and prepare them for further recommendation.
Subject
  • Knowledge
  • Graph theory
  • E-learning
  • Artificial intelligence
  • Technology in society
  • Education terminology
  • Educational technology
  • Artificial neural networks
  • Expert systems
  • Hypergraphs
  • Abstract data types
  • Graph data structures
  • Graphs
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software