About: The maintenance and renewal of water mains demand substantial financial investments, and direct inspection of all water mains in a distribution system is extremely expensive. Therefore, a cost effective break mitigation technique such as a failure forecasting model that allows one to predict the water mains failure likelihood, would reduce the negative social impact and the cost to serve. We introduce a semiparametric Bayesian model for pipeline failure forecasting. The model is centred on a nonparametric Gaussian Process Regression (GPR), and uses a parametric survival model to capture the long-term survival probability using domain knowledge. The parametric element in our model allows the inclusion of survival probability, while the nonparametric part allows us to handle covariates and to employ incomplete prior knowledge about pipe failures. We apply our model to the proactive maintenance problem using a real dataset from a water utility in Australia. The results demonstrate that, our model performs better than competing models such as Support Vector Regression, Poisson regression, Weibull, Gradient Boosting, and GPR, leading to substantial savings on reactive repairs and maintenance. Our water pipeline failure prediction models have been deployed in three states across Australia, and are being monitored by each water authority.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The maintenance and renewal of water mains demand substantial financial investments, and direct inspection of all water mains in a distribution system is extremely expensive. Therefore, a cost effective break mitigation technique such as a failure forecasting model that allows one to predict the water mains failure likelihood, would reduce the negative social impact and the cost to serve. We introduce a semiparametric Bayesian model for pipeline failure forecasting. The model is centred on a nonparametric Gaussian Process Regression (GPR), and uses a parametric survival model to capture the long-term survival probability using domain knowledge. The parametric element in our model allows the inclusion of survival probability, while the nonparametric part allows us to handle covariates and to employ incomplete prior knowledge about pipe failures. We apply our model to the proactive maintenance problem using a real dataset from a water utility in Australia. The results demonstrate that, our model performs better than competing models such as Support Vector Regression, Poisson regression, Weibull, Gradient Boosting, and GPR, leading to substantial savings on reactive repairs and maintenance. Our water pipeline failure prediction models have been deployed in three states across Australia, and are being monitored by each water authority.
Subject
  • Survival analysis
  • Senescence
  • Mathematical and quantitative methods (economics)
  • Sewerage
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software