About: Novel pathogenic coronaviruses – including SARS-CoV and SARS-CoV-2 – arise by homologous recombination in a host cell1,2. This process requires a single host to be infected with more than one type of coronavirus, which recombine to form novel strains of virus with unique combinations of genetic material. Identifying possible sources of novel coronaviruses requires identifying hosts (termed recombination hosts) of more than one coronavirus type, in which recombination might occur. However, the majority of coronavirus-host interactions remain unknown, and therefore the vast majority of recombination hosts for coronaviruses cannot be identified. Here we show that there are 11.5-fold more coronavirus-host associations, and over 30-fold more potential SARS-CoV-2 recombination hosts, than have been observed to date. We show there are over 40-fold more host species with four or more different subgenera of coronaviruses. This underestimation of both number and novel coronavirus generation in wild and domesticated animals. Our results list specific high-risk hosts in which our model predicts homologous recombination could occur, our model identifies both wild and domesticated mammals including known important and understudied species. We recommend these species for coronavirus surveillance, as well as enforced separation in livestock markets and agriculture.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Novel pathogenic coronaviruses – including SARS-CoV and SARS-CoV-2 – arise by homologous recombination in a host cell1,2. This process requires a single host to be infected with more than one type of coronavirus, which recombine to form novel strains of virus with unique combinations of genetic material. Identifying possible sources of novel coronaviruses requires identifying hosts (termed recombination hosts) of more than one coronavirus type, in which recombination might occur. However, the majority of coronavirus-host interactions remain unknown, and therefore the vast majority of recombination hosts for coronaviruses cannot be identified. Here we show that there are 11.5-fold more coronavirus-host associations, and over 30-fold more potential SARS-CoV-2 recombination hosts, than have been observed to date. We show there are over 40-fold more host species with four or more different subgenera of coronaviruses. This underestimation of both number and novel coronavirus generation in wild and domesticated animals. Our results list specific high-risk hosts in which our model predicts homologous recombination could occur, our model identifies both wild and domesticated mammals including known important and understudied species. We recommend these species for coronavirus surveillance, as well as enforced separation in livestock markets and agriculture.
Subject
  • Virology
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Biological interactions
  • Cellular processes
  • Molecular genetics
  • Occupational safety and health
  • Modification of genetic information
  • 2020–21 in UEFA football
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software