About: Multiple vaccine candidates against SARS-CoV-2 based on viral spike protein are under development. However, there is limited information on the quality of antibody response generated following vaccination by these vaccine modalities. To better understand antibody response induced by spike protein-based vaccines, we immunized rabbits with various SARS-CoV-2 spike protein antigens: S-ectodomain (S1+S2) (aa 16-1213), which lacks the cytoplasmic and transmembrane domains (CT-TM), the S1 domain (aa 16-685), the receptor-binding domain (RBD) (aa 319-541), and the S2 domain (aa 686-1213 as control). Antibody response was analyzed by ELISA, Surface Plasmon Resonance (SPR) against different Spike proteins in native conformation, and a pseudovirion neutralization assay to measure the quality and function of the antibodies elicited by the different Spike antigens. All three antigens (S1+S2 ectodomain, S1 domain, and RBD) generated strong neutralizing antibodies against SARS-CoV-2. Vaccination induced antibody repertoire was analyzed by SARS-CoV-2 spike Genome Fragment Phage Display Libraries (SARS-CoV-2 GFPDL), which identified immunodominant epitopes in the S1, S1-RBD and S2 domains. Furthermore, these analyses demonstrated that surprisingly the RBD immunogen elicited a higher antibody titer with 5-fold higher affinity antibodies to native spike antigens compared with other spike antigens. These findings may help guide rational vaccine design and facilitate development and evaluation of effective therapeutics and vaccines against COVID-19 disease. One Sentence Summary SARS-CoV-2 Spike induced immune response   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Multiple vaccine candidates against SARS-CoV-2 based on viral spike protein are under development. However, there is limited information on the quality of antibody response generated following vaccination by these vaccine modalities. To better understand antibody response induced by spike protein-based vaccines, we immunized rabbits with various SARS-CoV-2 spike protein antigens: S-ectodomain (S1+S2) (aa 16-1213), which lacks the cytoplasmic and transmembrane domains (CT-TM), the S1 domain (aa 16-685), the receptor-binding domain (RBD) (aa 319-541), and the S2 domain (aa 686-1213 as control). Antibody response was analyzed by ELISA, Surface Plasmon Resonance (SPR) against different Spike proteins in native conformation, and a pseudovirion neutralization assay to measure the quality and function of the antibodies elicited by the different Spike antigens. All three antigens (S1+S2 ectodomain, S1 domain, and RBD) generated strong neutralizing antibodies against SARS-CoV-2. Vaccination induced antibody repertoire was analyzed by SARS-CoV-2 spike Genome Fragment Phage Display Libraries (SARS-CoV-2 GFPDL), which identified immunodominant epitopes in the S1, S1-RBD and S2 domains. Furthermore, these analyses demonstrated that surprisingly the RBD immunogen elicited a higher antibody titer with 5-fold higher affinity antibodies to native spike antigens compared with other spike antigens. These findings may help guide rational vaccine design and facilitate development and evaluation of effective therapeutics and vaccines against COVID-19 disease. One Sentence Summary SARS-CoV-2 Spike induced immune response
Subject
  • Virology
  • Spectroscopy
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software