value
| - Reductions in perioperative surgical site infections are obtained by a multifaceted approach including patient decolonization, hand hygiene, use of closed lumen intravenous systems and hub disinfection, and environmental cleaning. Associated surveillance of S. aureus transmission quantifies the effectiveness of the basic measures to prevent the transmission to patients and clinicians of pathogenic bacteria and viruses, including Coronavirus Disease 2019 (COVID-19). To measure transmission, the observational units are pairs of successive surgical cases in the same operating room on the same day. We evaluated appropriate sample sizes and strategies for measuring transmission. We used historical cohort data from multiple hospitals. There was absence of serial correlation among observed counts of transmitted isolates within each of several periods (all P ≥.18). Similarly, observing transmission within or between cases of a pair did not increase the probability that the next sampled pair of cases also had observed transmission (all P ≥.23). Most pairs of cases had no detected transmitted isolates. Also, although transmission (yes/no) was associated with surgical site infection (P =.004), among cases with transmission, there was no detected dose response between counts of transmitted isolates and probability of infection (P =.25). Therefore, we recommend analyzing the presence/absence of transmission. The first of a fixed series of tests is to use the binomial test to compare the proportion of pairs of cases with S. aureus transmission to an acceptable threshold. An appropriate sample size for this screening is N =25 pairs. If significant, more samples are obtained while additional measures are implemented to reduce transmission and infections. Subsequent sampling is done to evaluate effectiveness. The two independent binomial proportions are compared using Boschloo's exact test. The total sample size for the 1(st) and 2(nd) stage is N =100 pairs. Because S. aureus transmission is invisible without testing, when choosing what population(s) to screen for surveillance, another endpoint needs to be used (e.g., infections). Only 10/298 combinations of specialty and operating room were relatively common (≥1.0% of cases) and had expected incidence ≥0.20 infections per 8 hours of sampled cases. The 10 combinations encompassed ≅17% of cases, showing the value of targeting surveillance of transmission to a few combinations of specialties and rooms. In conclusion, we created a sampling protocol and appropriate sample sizes for using S. aureus transmission within and between pairs of successive cases in the same operating room, the purpose being to monitor the quality of prevention of intraoperative spread of pathogenic bacteria and viruses.
|